Image denoising in the wavelet domain using Improved Neigh-shrink

نویسندگان

  • Rahim Kamran
  • Mehdi Nasri
  • Hossein Nezamabadi-pour
  • Saeid Saryazdi
چکیده

Denoising of images corrupted by Gaussian noise using wavelet transform is of great concern in the past two decades. In wavelet denoising method, detail wavelet coefficients of noisy image are thresholded using a specific thresholding function by comparing to a specific threshold value, and then applying inverse wavelet transform, results in denoised image. Recently, an effective image denoising method has been proposed called Neigh-shrink that exploits the interscale dependency of wavelet coefficients. In this paper, we extend Neigh-shrink denoising method by proposing a new thresholding scheme. Experimental results show that our method outperforms classical Neigh-shrink visually and in the terms of PSNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Wavelet Thresholding for Image Denoising

Image denoising using wavelet transform has been successful as wavelet transform generates a large number of small coefficients and a small number of large coefficients. Basic denoising algorithm that using the wavelet transform consists of three steps – first computing the wavelet transform of the noisy image, thresholding is performed on the detail coefficients in order to remove noise and fi...

متن کامل

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

International Journal of Computer Application Issue 4, Volume 4 (July-August 2014) Available online on http://www.rspublication.com/ijca/ijca_index.htm ISSN: 2250-1797

Digital images have been a major form of transmission of visual information, but due to the presence of noise, the image gets corrupted. Thus, processing of the received image needs to be done before being used in an application. Denoising of image involves data manipulation in order to produce a good quality image. This paper introduces a new technique that is formed by hybridizing the thresho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012